Neurologic and Functional Morbidity in Critically Ill Children With Bronchiolitis. (Carroll)

Shein SL, et al. Neurologic and Functional Morbidity in Critically Ill Children With Bronchiolitis. Pediatr Crit Care Med. 2017 Dec;18(12): 1106-1113.

OBJECTIVES: Neurologic and functional morbidity occurs in ~30% of PICU survivors, and young children may be at particular risk. Bronchiolitis is a common indication for PICU admission among children less than 2 years old. Two single-center studies suggest that greater than 10-25% of critical bronchiolitis survivors have neurologic and functional morbidity but those estimates are 20 years old. We aimed to estimate the burden of neurologic and functional morbidity among more recent bronchiolitis patients using two large, multicenter databases.

Continue reading

Advertisements

The Fecal Microbiota Profile and Bronchiolitis in Infants. (Emrath)

Hasegawa K, Linnemann RW, Mansbach JM, Ajami NJ, Espinola JA, Petrosino JF,
Piedra PA, Stevenson MD, Sullivan AF, Thompson AD, Camargo CA Jr. The Fecal Microbiota Profile and Bronchiolitis in Infants. Pediatrics. 2016 Jul;138(1). pii: e20160218.

BACKGROUND: Little is known about the association of gut microbiota, a potentially modifiable factor, with bronchiolitis in infants. We aimed to determine the association of fecal microbiota with bronchiolitis in infants.

METHODS: We conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis. We concurrently enrolled 115 age-matched healthy controls. By applying 16S rRNA gene sequencing and an unbiased clustering approach to these 155 fecal samples, we identified microbiota profiles and determined the association of microbiota profiles with likelihood of bronchiolitis.

RESULTS: Overall, the median age was 3 months, 55% were male, and 54% were non-Hispanic white. Unbiased clustering of fecal microbiota identified 4 distinct profiles: Escherichia-dominant profile (30%), Bifidobacterium-dominant profile (21%), Enterobacter/Veillonella-dominant profile (22%), and Bacteroides-dominant profile (28%). The proportion of bronchiolitis was lowest in infants with the Enterobacter/Veillonella-dominant profile (15%) and highest in the Bacteroides-dominant profile (44%), corresponding to an odds ratio of 4.59 (95% confidence interval, 1.58-15.5; P = .008). In the multivariable model, the significant association between the Bacteroides-dominant profile and a greater likelihood of bronchiolitis persisted (odds ratio for comparison with the Enterobacter/Veillonella-dominant profile, 4.24; 95% confidence interval, 1.56-12.0; P = .005). In contrast, the likelihood of bronchiolitis in infants with the Escherichia-dominant or Bifidobacterium-dominant profile was not significantly different compared with those with the Enterobacter/Veillonella-dominant profile.

CONCLUSIONS: In this case-control study, we identified 4 distinct fecal microbiota profiles in infants. The Bacteroides-dominant profile was associated with a higher likelihood of bronchiolitis.

3% Hypertonic Saline Versus Normal Saline in Inpatient Bronchiolitis: A Randomized Controlled Trial. (Betters)

Silver AH, et al. 3% Hypertonic Saline Versus Normal Saline in Inpatient Bronchiolitis: A Randomized Controlled Trial. Pediatrics. 2015 Dec;136(6): 1036-43.

BACKGROUND AND OBJECTIVES: Bronchiolitis, the most common reason for hospitalization in children younger than 1 year in the United States, has no proven therapies effective beyond supportive care. We aimed to investigate the effect of nebulized 3% hypertonic saline (HS) compared with nebulized normal saline (NS) on length of stay (LOS) in infants hospitalized with bronchiolitis.

METHODS: We conducted a prospective, randomized, double-blind, controlled trial in an urban tertiary care children’s hospital in 227 infants younger than 12 months old admitted with a diagnosis of bronchiolitis (190 completed the study); 113 infants were randomized to HS (93 completed the study), and 114 to NS (97 completed the study). Subjects received 4 mL nebulized 3% HS or 4 mL 0.9% NS every 4 hours from enrollment until hospital discharge. The primary outcome was median LOS. Secondary outcomes were total adverse events, subdivided as clinical worsening and readmissions.

RESULTS: Patient characteristics were similar in groups. In intention-to-treat analysis, median LOS (interquartile range) of HS and NS groups was 2.1 (1.2-4.6) vs 2.1 days (1.2-3.8), respectively, P = .73. We confirmed findings with per-protocol analysis, HS and NS groups with 2.0 (1.3-3.3) and 2.0 days (1.2-3.0), respectively, P = .96. Seven-day readmission rate for HS and NS groups were 4.3% and 3.1%, respectively, P = .77. Clinical worsening events were similar between groups (9% vs 8%, P = .97).

CONCLUSIONS: Among infants admitted to the hospital with bronchiolitis, treatment with nebulized 3% HS compared with NS had no difference in LOS or 7-day readmission rates.

Physiologic effect of high-flow nasal cannula in infants with bronchiolitis. (Ruth)

Hough JL, Pham TM, Schibler A. Physiologic effect of high-flow nasal cannula
in infants with bronchiolitis. Pediatr Crit Care Med. 2014 Jun;15(5):e214-9.

Full-text for Children’s and Emory users.

OBJECTIVE: To assess the effect of delivering high-flow nasal cannula flow on end-expiratory lung volume, continuous distending pressure, and regional ventilation distribution in infants less than 12 months old with bronchiolitis.

DESIGN: Prospective observational clinical study.

SETTING: Nineteen bed medical and surgical PICU.

PATIENTS: Thirteen infants with bronchiolitis on high-flow nasal therapy.

INTERVENTIONS: The study infants were measured on a flow rate applied at 2 and 8 L/min through the high-flow nasal cannula system.

MEASUREMENTS AND RESULTS: Ventilation distribution was measured with regional electrical impedance amplitudes and end-expiratory lung volume using electrical impedance tomography. Changes in continuous distending pressure were measured from the esophagus via the nasogastric tube. Physiological variables were also recorded. High-flow nasal cannula delivered at 8 L/min resulted in significant increases in global and anterior end-expiratory lung volume (p < 0.01) and improvements in the physiological variables of respiratory rate, SpO2, and FIO2 when compared with flows of 2 L/min.

CONCLUSION: In infants with bronchiolitis, high-flow nasal cannula oxygen/air delivered at 8 L/min resulted in increases in end-expiratory lung volume and improved respiratory rate, FIO2, and SpO2.