Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. (Carroll)

Tumlin JA, Murugan R, Deane AM, et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit Care Med. 2018 Jun;46(6):949-957.

OBJECTIVE: Acute kidney injury requiring renal replacement therapy in severe vasodilatory shock is associated with an unfavorable prognosis. Angiotensin II treatment may help these patients by potentially restoring renal function without decreasing intrarenal oxygenation. We analyzed the impact of angiotensin II on the outcomes of acute kidney injury requiring renal replacement therapy.

Continue reading

Early Systolic Dysfunction Following Traumatic Brain Injury: A Cohort Study. (Stulce)

Krishnamoorthy V, Rowhani-Rahbar A, Gibbons EF, et al. Early Systolic Dysfunction Following Traumatic Brain Injury: A Cohort Study. Crit Care Med. 2017 Apr 10. [Epub ahead of print]

OBJECTIVE: Prior studies have suggested that traumatic brain injury may affect cardiac function. Our study aims were to determine the frequency, longitudinal course, and admission risk factors for systolic dysfunction in patients with moderate-severe traumatic brain injury.

DESIGN: Prospective cohort study.

SETTING: Level 1 trauma center.

MEASUREMENTS: Transthoracic echocardiogram within 1 day and over the first week after moderate-severe traumatic brain injury; transthoracic echocardiogram within 1 day after mild traumatic brain injury (comparison group).

MEASUREMENTS AND MAIN RESULTS: Systolic function was assessed by transthoracic echocardiogram, and systolic dysfunction was defined as fractional shortening less than 25%. Multivariable Poisson regression models examined admission risk factors for systolic dysfunction. Systolic function in 32 patients with isolated moderate-severe traumatic brain injury and 32 patients with isolated mild traumatic brain injury (comparison group) was assessed with transthoracic echocardiogram. Seven (22%) moderate-severe traumatic brain injury and 0 (0%) mild traumatic brain injury patients had systolic dysfunction within the first day after injury (p < 0.01). All patients with early systolic dysfunction recovered in 1 week. Younger age (relative risk, 0.87; 95% CI, 0.79-0.94; for 1 yr increase in age) and lower admission Glasgow Coma Scale score (relative risk, 0.34; 95% CI, 0.20-0.58; for one unit increase in Glasgow Coma Scale) were independently associated with the development of systolic dysfunction among moderate-severe traumatic brain injury patients.

CONCLUSIONS: Early systolic dysfunction can occur in previously healthy patients with moderate-severe traumatic brain injury, and it is reversible over the first week of hospitalization. Younger age and lower admission Glasgow Coma Scale score are independently associated with the development of systolic dysfunction after moderate-severe traumatic brain injury.

Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. (Kamat)

Dünser MW, Takala J, Brunauer A, Bakker J. Re-thinking resuscitation: leaving blood pressure cosmetics behind and moving forward to permissive hypotension and a tissue perfusion-based approach. Crit Care. 2013 Oct 8;17(5):326.

“Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension (‘permissive hypotension’). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.”

Children’s and Emory users, request article from Emily Lawson.